Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Cardiovasc Magn Reson ; 24(1): 73, 2022 12 21.
Article in English | MEDLINE | ID: covidwho-2196336

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory suyndrome coronavirus 2 (SARS-CoV-2) is now entering its 4th year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. While pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play, RTP) following resolution of infection. A variety of different testing combinations that leverage the electrocardiogram, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance (CMR) imaging have been proposed and implemented to mitigate risk. CMR in particular affords high sensitivity for myocarditis but has been employed and interpreted non-uniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to RTP. This consensus document synthesizes available evidence to contextualize the appropriate utilization of CMR in the RTP assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Myocarditis , Sports , Humans , American Heart Association , Consensus , Leadership , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Predictive Value of Tests , SARS-CoV-2 , United States , Societies, Medical
2.
Circ Cardiovasc Imaging ; 16(1): e014106, 2023 01.
Article in English | MEDLINE | ID: covidwho-2194406

ABSTRACT

The global pandemic of COVID-19 caused by infection with SARS-CoV-2 is now entering its fourth year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. Although pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play) following resolution of infection. A variety of different testing combinations that leverage ECG, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance imaging have been proposed and implemented to mitigate risk. Cardiovascular magnetic resonance in particular affords high sensitivity for myocarditis but has been employed and interpreted nonuniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to return to play. This consensus document synthesizes available evidence to contextualize the appropriate utilization of cardiovascular magnetic resonance in the return to play assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Radiology , Sports , Humans , United States/epidemiology , SARS-CoV-2 , Consensus , American Heart Association , Leadership , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
3.
Eur J Clin Invest ; 52(12): e13871, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019235

ABSTRACT

AIMS: The aim of this study is to evaluate whether post-acute sequelae of COVID-19 cardiovascular syndrome (PASC-CVS) is associated with alterations in coronary circulatory function. MATERIALS AND METHODS: In individuals with PASC-CVS but without known cardiovascular risk factors (n = 23) and in healthy controls (CON, n = 23), myocardial blood flow (MBF) was assessed with 13 N-ammonia and PET/CT in mL/g/min during regadenoson-stimulated hyperemia, at rest, and the global myocardial flow reserve (MFR) was calculated. MBF was also measured in the mid and mid-distal myocardium of the left ventricle (LV). The Δ longitudinal MBF gradient (hyperemia minus rest) as a reflection of an impairment of flow-mediated epicardial vasodilation, was calculated. RESULTS: Resting MBF was significantly higher in PASC-CVS than in CON (1.29 ± 0.27 vs. 1.08 ± 0.20 ml/g/min, p ≤ .024), while hyperemic MBFs did not differ significantly among groups (2.46 ± 0.53 and 2.40 ± 0.34 ml/g/min, p = .621). The MFR was significantly less in PASC-CVS than in CON (1.97 ± 0.54 vs. 2.27 ± 0.43, p ≤ .031). In addition, there was a Δ longitudinal MBF gradient in PASC-CVS, not observed in CON (-0.17 ± 0.18 vs. 0.04 ± 0.11 ml/g/min, p < .0001). CONCLUSIONS: Post-acute sequelae of COVID-19 cardiovascular syndrome may be associated with an impairment of flow-mediated epicardial vasodilation, while reductions in coronary vasodilator capacity appear predominantly related to increases in resting flow in women deserving further investigations.


Subject(s)
COVID-19 , Coronary Artery Disease , Hyperemia , Myocardial Perfusion Imaging , Female , Humans , Coronary Circulation/physiology , COVID-19/complications , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Vasodilation , Post-Acute COVID-19 Syndrome
4.
Int J Cardiol ; 366: 35-41, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1926501

ABSTRACT

BACKGROUND: Acute COVID-19 infection has been shown to have significant effects on the cardiovascular system. Post-acute sequelae of SARS-CoV-2 (PASC) are being identified in patients; however, the cardiovascular effects are yet to be well-defined. The Post-COVID Cardiology Clinic at Washington University evaluates and treats patients with ongoing cardiovascular PASC. OBJECTIVES: This investigation aims to describe the phenotypes of cardiovascular symptoms of PASC in patients presenting to the Post-COVID Cardiology Clinic, including their demographics, symptoms, and the clinical phenotypes observed. METHODS: This was a retrospective analysis of symptoms, clinical findings, and test results from the first 100 consecutive adult patients who presented to the Post-COVID Cardiology Clinic at Washington University in St. Louis, between September 2020 to May 2021 with cardiovascular symptoms following COVID-19 infection. RESULTS: The population (n = 100) had a mean age of 46.3 years and was 81% female. Most patients had mild acute illness, with only 23% of patients requiring hospitalization during acute COVID-19 infection. The most commonly reported PASC symptoms were chest pain (66%), palpitations (59%), and dyspnea on exertion (56%). Of those presenting with these symptoms, 74/98 patients (75.5%) were found to have a significant blood pressure elevation, considerable sinus tachycardia burden, reduced global longitudinal strain, increased indexed left-ventricular end-diastolic volume (LVEDVi) by echocardiogram, and/or cMRI findings consistent with possible active or healing myocarditis. CONCLUSIONS: Our findings highlight clinical phenotypes of the cardiovascular manifestations of PASC. Further studies are needed to evaluate the pathophysiology, treatment options and long-term outcomes for these patients.


Subject(s)
COVID-19 , Myocarditis , COVID-19/complications , Female , Humans , Male , Myocarditis/complications , Phenotype , Retrospective Studies , SARS-CoV-2
5.
BMJ Open ; 11(9): e045557, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1394106

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has precipitated widespread shortages of filtering facepiece respirators (FFRs) and the creation and sharing of proposed substitutes (novel designs, repurposed materials) with limited testing against regulatory standards. We aimed to categorically test the efficacy and fit of potential N95 respirator substitutes using protocols that can be replicated in university laboratories. SETTING: Academic medical centre with occupational health-supervised fit testing along with laboratory studies. PARTICIPANTS: Seven adult volunteers who passed quantitative fit testing for small-sized (n=2) and regular-sized (n=5) commercial N95 respirators. METHODS: Five open-source potential N95 respirator substitutes were evaluated and compared with commercial National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirators as controls. Fit testing using the 7-minute standardised Occupational Safety and Health Administration fit test was performed. In addition, protocols that can be performed in university laboratories for materials testing (filtration efficiency, air resistance and fluid resistance) were developed to evaluate alternate filtration materials. RESULTS: Among five open-source, improvised substitutes evaluated in this study, only one (which included a commercial elastomeric mask and commercial HEPA filter) passed a standard quantitative fit test. The four alternative materials evaluated for filtration efficiency (67%-89%) failed to meet the 95% threshold at a face velocity (7.6 cm/s) equivalent to that of a NIOSH particle filtration test for the control N95 FFR. In addition, for all but one material, the small surface area of two 3D-printed substitutes resulted in air resistance that was above the maximum in the NIOSH standard. CONCLUSIONS: Testing protocols such as those described here are essential to evaluate proposed improvised respiratory protection substitutes, and our testing platform could be replicated by teams with similar cross-disciplinary research capacity. Healthcare professionals should be cautious of claims associated with improvised respirators when suggested as FFR substitutes.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Adult , Equipment Design , Humans , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , United States , Ventilators, Mechanical
6.
Clin Imaging ; 78: 247-249, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1281398

ABSTRACT

We report two cases of myocarditis, in two young and previously healthy individuals, temporally related to the second dose of the mRNA-COVID-19 vaccine. Both patients developed acute chest pain, changes on electrocardiogram (ECG), and elevated serum troponin within two days of receiving their second dose. Cardiac magnetic resonance (CMR) findings were consistent with acute myocarditis.


Subject(s)
COVID-19 , Myocarditis , COVID-19 Vaccines , Humans , Myocarditis/diagnostic imaging , RNA, Messenger , SARS-CoV-2
7.
Acad Radiol ; 28(2): 158-165, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064684

ABSTRACT

RATIONALE AND OBJECTIVE: Three-dimensional (3D) printing allows innovative solutions for personal protective equipment, particularly in times of crisis. Our goal was to generate an N95-alternative 3D-printed respirator that passed Occupational Safety and Health Administration (OSHA)-certified quantitative fit testing during the COVID-19 pandemic. MATERIALS AND METHODS: 3D printed prototypes for N95 solutions were created based on the design of commercial N95 respirators. Computed tomography imaging was performed on an anthropomorphic head phantom wearing a commercially available N95 respirator and these facial contour data was used in mask prototyping. Prototypes were generated using rigid and flexible polymers. According to OSHA standards, prototypes underwent subsequent quantitative respirator fit testing on volunteers who passed fit tests on commercial N95 respirators. RESULTS: A total of 10 prototypes were 3D printed using both rigid (n = 5 designs) and flexible materials (n = 5 designs), Prototypes generated with rigid printing materials (n = 5 designs) did not pass quantitative respirator fit testing. Three of the five prototypes with flexible materials failed quantitative fit testing. The final two prototypes designs passed OSHA-certified quantitative fit tests with an overall mean fit factor of 138 (passing is over 100). CONCLUSION: Through rapid prototyping, 3D printed N95 alternative masks were designed with topographical facial computed tomography data to create mask facial contour and passed OSHA-certified quantitative respiratory testing when flexible polymer was used. This mask design may provide an alternative to disposable N95 respirators in case of pandemic-related shortages. Furthermore, this approach may allow customization for those that would otherwise fail fit testing on standard commercial respirators.


Subject(s)
COVID-19 , Pandemics , Equipment Design , Humans , Masks , Materials Testing , N95 Respirators , Printing, Three-Dimensional , SARS-CoV-2 , Tomography, X-Ray Computed
8.
Radiology ; 298(2): E107-E108, 2021 02.
Article in English | MEDLINE | ID: covidwho-978839
SELECTION OF CITATIONS
SEARCH DETAIL